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We describe the linear MHD eigenmode code NOVA-R, which 
calculates the resistive stability of axisymmetric toroidal equilibria. A 
formulation has been adopted which accurately resolves the continuum 
spectrum of the ideal MHD operator. The resistive MHD stability equa- 
tions are transformed into three coupled second-order equations, one 
of which recovers the equation solved by the NOVA code in the ideal 
limit. The eigenfunctions are represented by a Fourier expansion and 
cubic B-spline finite elements which are packed about the internal 
boundary layer. Accurate results are presented for dimensionless 
resistivities as low as 1 Oeso m cylindrical geometry. For axisymmetric 
toroidal plasmas we demonstrate the accuracy of the NOVA-R code by 
recovering ideal results in the /I + 0 limit, and cylindrical resistive inter- 

change results in the a/R+0 limit. d’ analysis performed using the 
eigenfunctions computed by the NOVA-R code agree with the 
asymptotic matching results from the resistive PEST code for zero p 
equilibria. 0 1992 Academic Press. Inc 

I. INTRODUCTION 

In order to achieve improvement in the magnetic conline- 
ment properties of tokamak fusion reactors, it is useful to be 
able to calculate what types of equilibria are free from 
resistive MHD instabilities. In this paper we present an 
accurate numerical method to determine the resistive MHD 
stability of arbitrarily shaped axisymmetric toroidal equi- 
libria. The mathematical problem requires solving a system 
of two-dimensional partial differential equations in which 
the complex frequency of the resistive MHD eigenmodes is 
the eigenvalue. 

Obtaining an accurate numerical solution to these equa- 
tions is made difficult by several effects. In typical systems of 
interest the resistivity plays the role of a small parameter 
multiplying the highest derivative, leading to the presence of 
an internal boundary layer in the solution. Also, there exist 
several classes of solutions whose eigenmodes are of 
widely different polarization and whose eigenvalues can 
differ by many orders of magnitude. Resistive instabilities 
correspond to one of the smallest eigenvalues and the most 
singular eigenfunctions. 

The time scale for ideal instabilities in tokamaks is given 

* Present address: National Center for Physical Acoustics, University of 
Mississippi, Coliseum Drive, University, MS 38677. 

by the Alfvtn time, rA =a h/B (in rationalized MKS 
units). Here, a is the plasma minor radius, p is the plasma 
density, and B is the magnetic field. The slow time scale of 
global resistive diffusion is given by rR = a2/q, where q is 
the plasma resistivity. In the limit as S= tR/tA + co, a 
boundary layer theory has been developed in which one- 
dimensional “inner region” equations involving resistivity 
are solved within the boundary layer and two-dimensional 
“outer region” equations without resistivity are solved away 
from the boundary layer. These regions are connected by 
asymptotic matching of the solutions from the neighboring 
regions. 

By using this matching technique, the asymptotic growth 
rate scaling for various resistive modes can be derived. 
FKR [3] discovered the growth rate scaling of the tearing 
mode r3R/‘ry, and the resistive interchange mode scaling, 
~$54;~. The asymptotic matching method has been 
implemented numerically in cylindrical geometry [4], and 
has been used to calculate the resistive stability properties of 
cylindrical equilibrium with arbitrary profiles. 

Glasser, et al. [5] (GGJ) extended the analytical 
asymptotic analysis to arbitrarily shaped axisymmetric 
toroidal plasma equilibria. The asymptotic matching 
approach was successfully used to obtain a qualitative 
theoretical understanding of toroidal effects on the stability 
of a plasma against resistive modes. GGJ found that 
favorable average curvature is an important stabilizing 2D 
effect. Although the asymptotic approach established a 
qualitative theory of toroidal effects, it has proven quite 
difficult to apply this approach to determine the stability 
of arbitrary axisymmetric toroidal equilibria. Several 
asymptotic matching codes are presently being developed 
CL 691. 

Initial value codes have been developed in order to solve 
the time dependent linear (or non-linear) resistive MHD 
equations throughout the entire pasma [4, l&14]. For 
toroidal equilibria, these codes are typically effective for 
S < 106. Higher values of S are limited by numerical 
accuracy and/or available computing resources. The S 
regime relevant to fusion reactors is given by 10’ < S < 10”. 
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Eigenvalue or “spectral” codes have been developed 
[ 15-161 to solve the full set of linearized equations 
throughout the entire plasma, but these codes are specific to 
cylindrical equilibria and are typically limited to S< IO’. 
Kerner was able to create a cylindrical eigenvalue code 
which succeeded in obtaining results for S< 10” by taking 
measures to reduce the “spectral pollution” problem [ 171. 
However, there does not appear to be a straightforward way 
to extend Kerner’s technique from cylindrical to toroidal 
geometry. 

The accurate numerical computation of resistive 
instabilities is impossible unless the subdominant con- 
tinuum ideal MHD modes are adequately resolved. The 
physical reason for this is now given. The resistivity allows 
the plasma to move with new degrees of freedom that are 
forbidden by the ideal MHD equations. One of the 
linearized resistive MHD equations can be written as 

( > 
1 -fV’ b=Vx(kxB), (1.1) 

where 4 is the plasma displacement, s is the growth rate, and 
B and b respectively give the equilibrium and perturbed 
magnetic fields. If the plasma perturbation has spatial 
variations over lengths on the order of L, the maximal 
growth rate of a mode significantly affected by the resistive 
term in Eq. (1.1) is on the order of s w  q/L’. In order for a 
growing mode to become interesting on a shorter time scale 
than the magnetic field diffusion time (a’/~), the mode must 
have spatial variations on a much smaller spatial scale than 
a. The natural candidates for ideal MHD modes that will be 
significantly influenced by resistivity are then the continuum 
modes, which diverge at singular surface(s) [3, 181. 

The singular continuum modes arise when the highest 
order coefficient of the ideal MHD radial displacement 
eigenmode equation vanishes. Calculating this leading 
order coefficient accurately is essential in order to resolve 
the continuum modes near the point where they diverge. 
The accurate numerical calculation of this small leading 
order term can be particularly difficult because of the 
presence of large terms associated with the MHD fast wave. 
A small relative error in the computation of the large terms 
associated with the fast wave can “swamp” the computation 
of the singular behavior of the continuum modes. Therefore, 
one of the central topics addressed by this paper is to find a 
way to formulate the resistive MHD equations which 
accurately resolves the continuum spectrum. We have 
chosen a mathematical formulation of the resistive MHD 
eigenmode equations that decouples the continuous spectra 
from the fast magnetosonic wave. This formulation is a 
generalization of the one previously employed by the 
NOVA [ 1 ] code for ideal MHD. 

The organization of this paper is now given. In Section II, 
we describe the numerical problem of spectral pollution. We 

outline a scheme to avoid spectral pollution and to 
accurately resolve low frequency information by separating 
out the computation of the ideal MHD continuum spec- 
trum away from the computation of the fast wave. Sec- 
tion III gives the equations developed for our formulation 
of the linearized MHD eigenmode equations. Section IV 
provides an understanding of the numerical methods 
employed by the NOVA-R code. Section V gives results 
from the NOVA-RC code which implements the cylindrical 
limit of our formulation of the resistive MHD stability 
problem. For a resistive interchange mode, we show that 
our results have four significant digit agreement with an 
asymptotic matching code at a magnetic Reynold’s number 
of up to S= 103’. Results for resistive interchange and 
tearing instabilities are given from the fully toroidal two- 
dimensional NOVA-R code in Section VI. The NOVA-R 
results are in good agreement with resistive PEST results for 
a zero fi case. A summary of the paper is given in Section VII. 
Appendix A and Appendix B discuss important technical 
issues relevant to ensuring the accuracy of cubic B-spline 
packages when one wishes to closely pack grid points near 
an internal boundary layer. 

II. SPECTRAL POLLUTION 

A resistive stability code must minimize the effect of fast 
wave spectral pollution if it is to be capable of investigating 
resistive modes for resistivities low enough to be in the range 
of interest for fusion reactors. Here, we illustrate in the 
cylindrical limit why it is necessary for the problem to be 
formulated in terms of variables that “separate out” these 
continuum-like modes from the fast magnetosonic modes in 
order to more accurately resolve the continuum-like 
resistive modes of interest. 

Consider a cylindrical plasma column in which the cylin- 
drical coordinate r is the only non-ignorable coordinate. We 
define the differential operators F=k,, = --I’(B/B) .V and 
k, = -i( B/B x i) . V which respectively correspond to direc- 
tional derivatives along and across field lines but within the 
plane of the magnetic surfaces. The directional derivative 
across the surfaces is given by k,= -i(d/&). Let the sim- 
plifying assumption be made that F= k,, varies with r while 
all other equilibrium quantities are independent of r. Thus, 
only F= F(r) will be in the way of recovering the 
homogeneous limit. In this quasi-homogeneous cylindrical 
limit, the linearized ideal MHD eigenmode equation for the 
radial displacement is [ 191 

a (po* - B2F2)[p2( 1 + B2/yPo) - B2F2] 

%- 
“r 

(~co~)~-~P,[~co*(~+B~/~P,)-B*F*](~~+F~)~~ ’ 1 
-( po2 - B*F* 

> 
<,=o. 

YPO 
(2.1) 
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Here y = $ is the ratio of specific heats. The coefficient of the 
highest order ,derivative will vanish if either 

pm2 - B2F2 = 0 (2.2) 

or 

po2 I+; -B’F*=O. 
( > 

Equations (2.2) and (2.3) correspond to dispersion relations 
for the shear Alfvtn and slow sound continuum, respec- 
tively. If there is any point in the plasma where Eq. (2.2) or 
(2.3) is satisfied, then a singular eigenmode solution exists 
c201. 

Among the regular solutions to Eq. (2.1) is the fast 
magnetosonic wave. In the homogeneous limit for 
k:, << kl , the fast wave dispersion relation is 

po2=yPo 1 +g (k;+F2)+B(F4), 
( > 

where k2 =k2+k2 The eigenfrequency of the fast 
magnetosonic mode’fs much larger than that of all the other 
ideal MHD modes. For ypO -C-C B2 the fast wave is given by 
po21B2 CC kt and k: = kf + kf, so we subsequently refer to 
kf as a “fast wave term.” 

A formulation of the ideal MHD equations, which is 
vulnerable to spectral pollution, is now demonstrated. The 
plasma displacement, 5, and perturbed particle pressure, p, , 
are used as unknown variables. For 5, = (B/B x i) .k, 
t,=F.& and (x,, x2, x3) = C&/B, ipI/B2, -t,], the “quasi- 
homogeneous” ideal MHD cylindrical limit equations are 
given by 

2 

-$$+kf+F’ ks k&r 

ks 
B2F2 B2 
pw2-- k 

YPO 

k&r kr -$+k;+F= 

X (2.4) 

After Fourier transforms are applied in the two ignorable 
coordinates 8 and z, note that r, and p, can be algebraically 
eliminated in terms of <,, since the upper left-hand corner 
2 x 2 matrix has no ajar = ik, differential operators and 
therefore can be inverted. Eliminating p1 and t,, one 

obtains an equation which the numerically generated l, 
solution will obey, 

ERR+(pw2-B2F2)[po2(i+B2/ypo)-B2F2] a 

(po2)=-ypo[po2(1 +B2,ypo)-B2F2,(k~+F2)~tr 1 
-(pw2;pllJi2) (,=O. (2.5) 

Equation (2.5) differs from (2.1) because of the ERR term. 
The ERR term represents the kt terms which cancel analyti- 
cally, but will not perfectly cancel computationally. 
Numerical errors causing ERR # 0 will directly affect the 
accuracy of the continuum mode calculations. 

One contribution to the ERR term will come from the 
fact that the kz operator in the upper left corner element of 
the matrix in Eq. (2.4) is not numerically equivalent to the 
product of two k, operators. This will result in a computa- 
tion of the singularity associated with the shear AlfvCn 
continuum given by 

11 . 

Here we define a numerical error due to the fast wave terms, 

ERR 
I 

= k: - (Uks) 
k; ’ 

In toroidal geometry, the error due to kz # (k,)(k,) will 
be enhanced by the convolution errors caused by the trun- 
cation of the Fourier series representation of k, and kz. 
Keeping M harmonics, the truncation error of Fourier 
harmonics gives kz - (k,)(k,) - ePdMj2, where the constant 
d is of order unity. When k: ERR, x kf,, the fast wave 
pollution becomes a serious problem. 

We can use an estimation for ERR, based on the specific 
numerical computation being used. The numerical errors 
generated by N linear elements in r, N cubic elements in r, 
and M Fourier harmonics in 8 are represented by 

ERR”’ = UN-* I ERR”’ = bNp4 I 
ERR(F) = ce - M&2 I 2 respectively. 

For our crude estimates, we take a = b = c = d= 1. For 
tearing modes o - q3” and at the resistive layer k,,/k, N 
(dq)v * 2/5 Here E is the inverse aspect ratio and we use 
e/q c l/10. The range of resistivities of interest to fusion 

jreactors is 10-‘“<~ < lOPa in our units (where the 
resistivity is the inverse magnetic Reynolds number). 
Insisting that the spectral pollution error be no larger than 
1% of the correct value of the pm2 - B2F2 factor at the 
boundary of the resistive layer (k: ERR./kt, < O.Ol), one 

581/103/l-4 
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TABLE I 

Numerical Convergence Estimates 

‘I = 1o-6 q= 1o-8 q= 10-10 

Linear elements N> 25,000 160,000 1 ,ooo,ooo 
Cubic elements N> 160 400 1000 

Fourier harmonics M> 40 48 55 

obtains the numerical constraints given by Table I. These 
rough estimates on the constraint for N are somewhat 
pessimistic. Improvement is possible by using a non- 
uniform radial grid and packing grid points near the singular 
surface(s). But the required M number for resolution in 8 
cannot be significantly lowered. The run time will scale like 
NM3, so carrying 55 Fourier modes will be costly. Due to 
roundoff errors, the computer will obtain the given theoreti- 
cal scaling of finite element errors only for sufficiently low N 
and M. Thus, for a poorly chosen formulation it may be 
impossible to reduce the numerical error from the fast wave 
terms to an acceptable level. 

The NOVA-R formulation eliminates the possibility of 
any fast wave terms (k:) entering into the calculation of the 
continuum singularities by analytically separating out the 
terms relevant to the computation of the continuum 
singularities. In order to demonstrate this, the tJ, equation 
of the final formulation which we have chosen is now given. 

In the ideal limit, the NOVA-R formulation is based on 
the fundamental variables P, =pi + B. b, rlL, <,, and V. 5, 
where 5 = 5,(Vll//lV+(‘) + i&(B x ‘Q/B’) + i5,B and I,+ 
plays the role of the radial coordinate. The eigenmode 
equations [ 1 ] are given symbolically by 

where E, F, C, and D are 2 x 2 matrix involving only surface 
operators, i.e., no a/@ terms operating on the dependent 
variables. After eliminating the 5, and V. g variables by 
numerically inverting the E matrix, we have 

det(E) $p,=ff,,P,+H,&, 

a 
det(W G 

where 

C + DE’F and E’= det(E) E-‘. 

Note that the a/at++ terms have been “tagged” with 
the det(E) term. For spatial variations of <+ to become 
infinite, det(E) must vanish. The continuum singularities 
correspond to the zeros of det(E). The formulation has been 
carefully chosen in such a manner that no fast wave terms 
(k:) are in the E matrix. Therefore, after inverting the E 
matrix the coefficients of (a/8$) P, and (a/&G) tti will 
accurately determine the continuum mode singularities 
without relying on the cancellation of large fast wave terms. 
Thus, the formulation has separated out the computation of 
the continuum mode singularities from all of the fast wave 
terms. 

The explicit form of the E matrix was first derived by 
Cheng and Chance [ 1 ] and is given by 

E= 

i 

’ i2K, 

where 

In Section III, we present the NOVA-R formulation, 
which reduces to the (given) ideal MHD NOVA formula- 
tion in the limit as v] + 0, and thus eliminates the fast wave 
spectral pollution of the lower frequency shear Alfven and 
slow sound continuous spectra. 

III. THE NOVA-R FORMULATION 

A. Equilibria 

Equilibria are constrained to satisfy 

JxB=VP, VxB=J, V.B=O. 

Magnetic coordinates have been used extensively in the 
literature to represent MHD equilibria [21-291. Our com- 
putation uses straight field line magnetic flux coordinates, 
given by ($, 0, <). These coordinates are defined in terms of 
the cylindrical coordinates (X, 4, Z). A stationary axi- 
symmetric MHD equilibrium with isotropic pressure is 
described in the form, 

Po=P(tiL 

B=VcxV++q($)V+xVB=VbxV$+g(lC/)V4, 

where the magnetic flux is given by $I = Ii/(X, Z). The tj 
variable will be determined by the Vll/ component of the 
force balance equation, J x B = VP, which gives a Poisson- 
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like, partial differential equation called the equilibrium 
Grad-Shafranov equation, 

PV.[$]= -(X2g+g$). 
The Jacobian, J = (VI,+ x V8 . Vi) - I, is typically chosen such 
that for fixed $ and 4 a uniform 8 grid corresponds to equi- 
distant arcs on the II/ surface between adjacent grid points. 
For the most general case, we represent the Jacobian by 

J(X, Z) = 
X’ 

a($) IW Bk’ 
where i, j, k are integers. 

For fixed $ and 4, along an element of arc length ds (where 
ds2 = dX2 + dZ*) the relation 

determines 8, so specifying .I determines 8. Here c((@) is 
determined by the constraint that 8 be 271 periodic. The 
straight field line toroidal angle coordinate is given by 

where 6 is 27~ periodic in 8 and defined by the equation 

q(G) 1,; =$. 
( > 

This equation defining 6 follows from the restriction that 
the field lines be straight in (II/, 8, [) coordinates, i.e., 
B .V[/B .VB = q(t,b). 

B. Resistive MHD Equations 

Here, a derivation of the equations solved by NOVA-R is 
given. All perturbed quantities have es’ time dependence 
where s = -io. The following vector equations have been 
indexed according to the equation number subsequently 
used to refer to their V$, B x V$, and B projections, respec- 
tively. The linearized resistive MHD eigenmode equations 
(and two useful definitions) are given by 

ps2k= -VP, + (V x B) x b + j x B (3.10), (3.1), (3.5s) 

b=V x (6 x B) - (q/s)T (3.1s), (3.4s), (3.2) 

PI+vPo~5+YPov~5=0 (3.2s) 

T=Vxj (3.4)-( 3.6) 

j=Vxb (3.7)-(3.9) 

v.g=v. 
i( 

$+(Bx;$ytiJ+vg-f) .5} (3.3) 

r+V.{(I-$).&}. (3.3s) 

While keeping all the V. 4 terms, we now substitute in the 
equations 

pl=P,-B.b 

V$ BxV$ B 
b=-iQ - ~ 

e ,v,p+Q, Iv+l2 +Q,,, 

j= -iR,V$+R,-- Bxv’+R B 
WI’ b 

BxV$ 
T= -iT,v’h+Ts ,v+,2 +T,B 

and use the following definitions: 

The 15 equations given by (3.1)-(3.10) and (3.1s)-(3.5s) 
are then modified by sequentially substituting out Qti, Qb, 
V. kl, and Q, by using Eqs. (3.1s) through (3.4s), respec- 
tively. Then, Eq. (3.3) is modified by subtracting l/B* times 
Eq. (3.2). This removes the 56 term in Eq. (3.3). Finally, 
(3.5s) is used to eliminate 56. The final resistive MHD equa- 
tions to be implemented numerically in the NOVA-R code 
are given by the following 10 equations: 

1 
+i2K,yp,V.k-iBxV$.V $ [ 1 
-~~[V$~* T,-tiB.VT, 

J.B 
+i- 

B2 
B.VS,--iB.V[$$S<*] 

+i2K,pbt,=O 

V.5 

(3.1) 

(3.2) 
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T++ lVlfb12 
--!- {iB.VR,-iBxVI//.VR,}=O 

T, + ‘;’ 2 {BA’R,-sR,-p;R,} 

+V$.VR,=O 

-[pb+V-($$)]RAJ.B)R,} 

- WVR~=O 
WI’ 

B.Vt, +iypo BxVt,b.V ‘2 ] 
[ 1 

+iBxVI//.V 2 +fiB.VT, [ 1 
-lV$12Ryl+iB-V[~$i] 

t* +ipbBxV$.V s =0 [ 1 
-g WI’ . 7,B.V&&~v.+; 

 ̂

(3.3) 

(3.4) 

(3.5) 

(3.6) 

+~+[P;+V.($-$)] Ts 

2K,v.5- 2K, p, 
- ypo IVljl’ iw 

IW2s --- 
B2 

L T 
IW’ 5 

B.V 
+ 

F-1 WI2 

- 

(3.9) 

v*.vp, =. 
+ IW2 ’ 

(3.10) 

(3.7) These 10 equations form the NOVA-R formulation. The 
10 fundamental variables are 

LV.5, P,, T,, T,> Tb, R,, Rs, R,, 51~. 

In the limit where 9 -+ 0, four of the 10 NOVA-R equations, 
(3.1)-( 3.3), (3. lo), identically recover the NOVA formula- 
tion [ 11. 

The resistive boundary conditions imposed at the wall are 
that tti, R,, and R, vanish. It will be shown that this is 
sufficient to provide boundary conditions for all variables. 
The condition that R, and Rb vanish follows from: (1) 
tti = 0 (impenetrable wall); (2) v. = 0 (flow-free equilibria); 
(3) the tangential electric field vanishes at the (infinitely 

= 0 (3.8) conducting) wall; and (4) E + v x B = (q/s)j. But if q = 0, the 
fourth noint in this argument breaks down since Ohm’s law 
no longer yields any information about j. In the ideal limit, 

-[pb+V-(s)]yiB.Vt, - - 
R, = R,(t,, &, t;) #O and R, = Rh(t+, tk, <z) ~0. For 
the ideal MHD problem one only imposes rti =0 at the 
wall, and there is no additional freedom to prescribe R, and 
R, independently. 

+!$BxV$VTJ. The additional, non-ideal boundary conditions at the 
wall have the potential of preventing the recovery of ideal 
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MHD results in the q -+ 0 limit. However, the NOVA-R for- understood that one never reduces terms by differentiating 
mulation has the beneficial property of directly recovering coefficients with respect to $. Thus, one would not make the 
ideal MHD results in the r] -+ 0 limit because the additional replacement 
resistive boundary conditions fully decouple from the 
second-order differential tti equation. This provides a 
smooth connection to ideal MHD in the appropriate limit. 

$ [E&l -+g$+d$ 

For solutions that are analytic, it can be shown that all 
poloidal harmonics of tti and R, must vanish at the origin. Making this type of substitution would typically create 

All m # 0 poloidal harmonics of R, must also vanish, and more work since new equilibrium quantities, i.e., (aE/&$), 

for m = 0, (a/ax) Rp’ = 0, where x = A. This gives the set wou1d have to be generated. 
of boundary conditions that are used in the NOVA-R code At this stage the NOVA-R formulation is a system of 

at the origin. coupled second-order radial differential equations for the M 
Fourier amplitudes of the three unknown quantities, 

IV. NUMERICAL METHOD (R,> R,> 5$). 

To make further progress, the functional dependence of 
the problem on the poloidal angle 8 and the toroidal angle 

The numerical NOVA-R equations are of the form 

[ is discretized by expanding each of the 10 dependent 
variables into a truncated Fourier series. Only a single 
harmonic, n, in the toroidal angle is retained since the 

C~+[B$1).+$IDyl+$jE(-$y)]=0, (4.1) 

. 
axisymmetric equilibrium does not mix modes of different wnere 

n number. However, the two-dimensional equilibrium 
does couple together poloidal harmonics associated with 
different m values. We keep M harmonics in the poloidal 
angle, letting m vary from mlo to mhi, so M’= mhi - mlo + 1. 
After applying Galerkin’s method to project out each of the 
A4 Fourier harmonics, each analytical NOVA-R equation 
becomes M coupled ordinary differential equations. Each Y= 
coefficient in the final analytical NOVA-R equations 
(3.1)( 3.10) becomes an M x M matrix which is in general 
Ic/ dependent. Therefore, all of the Mx M coefficient 
matrices must be calculated on each II/ surface (of the 
numerical $ grid one has chosen). 

Some of the coefficients in the 10M by 1OM system of 
c 

/R \ 
equations have terms which are multiplied by different 
powers of s, the growth rate. Each term involving a different 
factor of sp is computed independently with sp factored out. 
Thus, the computation can be done once and for all outside 
of the loop in which one iterates over values of s to search 
for an eigenfrequency corresponding to a solution. 

Expanding into a Fourier series transforms the surface 
differential operators B .V and B x VI) .V into algebraic 
matrix multipliers. This allows the first seven of the 10 equa- 
tions in the NOVA-R formulation to be algebraically 
inverted, thereby eliminating the first seven unknowns (in 
the order as listed). To reduce the 10M equations in 10M 
unknowns into 3M equations in 3M unknowns, first 5, and 
V ‘5 are simultaneously eliminated by using Eq. (3.1) and 
(3.2). Then, P, is eliminated using Eq. (3.3). Next T,, T,, 
and T, are simultaneously eliminated using Eqs. (3.4), 
(3.5), and (3.6). Finally, R, is eliminated using Eq. (3.7). 
This procedure for reduction to a 3M system of equations 
must be repeated on each $ surface. This reduction of the 
10M equations to 3M is uniquely defined as long as it is 

Yl”‘“‘W - 

Yl 
(do+ I’(*) 

y\““+,)) 

YY”‘W 

y\mh))($) 

mhi 

=e -ini+sl 
c 

m=mlo 

In the YI + 0 limit, the final M equations represented in 
(4.1) originating from (3.10), identically recover the NOVA 
equations for tti and decouple from the remaining 2M 
equations originating from (3.8) and (3.9). 

For M = mhi - mlo + 1, the next step in the calculation 
involves discretizing this system of 3M coupled second- 
order differential equations in I+$ given by (4.1). An 
approximation for each poloidal harmonic of the unknown 
solution is to be constructed from a linear combination of 
cubic B-spline elements in the form 

Nf2 

Y:“‘w = 1 .v,“ks,($). 
&=I 

(4.2) 

Each element of the B, C, D, and E matrices, given in 
Eq. (4.1) is also evaluated with a B-spline expansion. This is 
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done by evaluating all of the coefficients on each II/ surface 
and then choosing an expansion for the coehicients that 
interpolates the N data points. For our particular choice of 
finite elements, the interpolation constraint removes only N 
of the N + 2 degrees of freedom. The remaining two degrees 
of freedom are found by using numerical approximations of 
the first derivatives of each coefficient at the endpoints of the 
il/ grid. 

In accordance with Galerkin’s method, Eq. (4.1) is SUC- 

cessively multiplied by each of the Bk( II/) finite elements and 
integrated over all $. In carrying out this procedure, one 
arrives at a tensor equation for the finite element amplitudes 
of the form 

[Bj&,(s) + Ckpk(S) + q&,(s) + E;pk(S)] y,“” = 0 (4.3) 

for 

Here i refers to one of the three final NOVA-R equations 
originating from (3.8)-( 3. lo), and I and p refer to e-“@B,( +) 
projection of that equation. The j, m, k indices are consis- 
tent with Eq. (4.2). 

At this point we have developed 3M(N + 2) equations to 
solve for 3M(N + 2) unknowns. For the cubic B-splines, 
only B,($) and B,,,+*(e) are non-trivial at 1+5 =0 and 
I(/ = 1, respectively. Therefore, the boundary conditions, 
y(ll/ = 0,0) = 0 and y($ = 1,0) = 0 are satislied by imposing 
the condition that yy” = Ofork=landk=N+2forallm 
and j. This represents a set of 6M additional equations. 
These 6M equations effectively remove the B,(Il/) and 
B -(I+$) finite elements from the basis set being used to N-FL 

expand the unknown variables. Galerkin’s method requires 
that the solution be orthogonal to the basis functions used 
to expand the unknown functions. The 6M equations 
corresponding to the projections of B,($) and B,+,(e) are, 
therefore, replaced by the boundary conditions. 

By rearranging the indices, one can reformulate the 
tensor equation given in Eq. (4.3) into a simple matrix 
equation. The structure of the cubic B-sphne finite element 
generated matrix is most easily visualized by considering 
each 3M x 3M matrix to be one “element.” With this under- 
stood, when using N grid points in $ one generates an 
(N + 2) x (N + 2) matrix with seven non-trivial diagonals. 
The convention used is that for 

cc=3M(p-l)++(i-l)++-Mmlo+l, 

p=3M(k-l)+M(j-l)+m-mlo+l, 

ff,@) = Bkpk(S) + c&&) + @,,p&) + Ej&,,(s), 

Y,= yi”“. 

Now the problem has been reduced to the single matrix 
equation, 

[H(s)]Y = 0. 

In order to find non-trivial solutions, one iterates over- 
complex s space to find zeros of det[H(s)]. Given a value 
S such that det[H(S)] = 0, the associated eigenfunction 
solution corresponds to the null space of the H(?) matrix. 

The eigenvalues, i, that are real numbers are relatively 
easy to find. Since the determinant is real for all real s, one 
simply needs to plot out values of the determinant along the 
real s axis and look for sign changes. A binary search is then 
used to converge to the s” value where the sign change 
occurs. For complex eigenvalues, solutions are much more 
difficult to find. Typically one is forced to start with an equi- 
librium in which the eigenvalue of interest is real and then 
slowly change parameters toward the desired equilibrium 
while tracking the root through the complex plane. As long 
as such a technique is used to ensure that one knows an 
initial guess very near the complex eigenvalue of interest, 
then Muller’s method may be used to converge to the 
precise value of i. 

Some of the additional features which distinguish the 
NOVA-R formulation are as follows: 

1. The NOVA-R involves the Fourier moments of three 
coupled second-order equations in N = 3 variables. This is 
the minimum number possible. The CPU time required to 
evaluate the determinant of the finite element generated 
matrix scales like N3, so formulations solving for more 
unknowns will run slower. Furthermore, the determinant of 
a larger matrix will typically be a more ill-behaved function 
of s so formulations using more than N = 3 dependent 
variables will require more iterations of evaluating the 
determinant before converging to an eigenvalue. 

2. Galerkin’s method is more naturally suited to be 
applied to second-order equations than to first-order equa- 
tions [30 J. For finite resistivity and for q = 0, none of the 
variables have highest order derivatives (in a/a+) which are 
first derivatives. 

3. The NOVA-R equations do not become degenerate 
at any point in the plasma away from the magnetic axis. 

V. CYLINDRICAL GEOMETRY RESULTS 

Substantial simplification of the formulation given in 
Section IV results when we specialize to “straight” or 1D 
equilibria. Using cylindrical (r, 13, z) coordinates, the 
equilibrium quantities depend only on the minor radius r 
and are thus one-dimensional. The only toroidal effect 
retained is the periodicity length, 0 <z < 27rR,. When the 
0 and z dependences are expanded in a Fourier series, e.g., 

5,(r, 0, z)= 1 Sjmxn) (r) expCi(me - n4K,)l, 
m.” 
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we find that because the equilibrium quantities depend only 
on r, there is no coupling between the harmonics with dif- 
ferent m and n. This simplification was used in developing 
the 1D NOVA-RC code, which is significantly less cumber- 
some than the more complete 2D NOVA-R code. We first 
report on results using NOVA-RC for two problems given 
in the literature. 

Even if one chooses to only use one poloidal harmonic in 
the NOVA-R code, many fundamental differences exist 
between the 1D NOVA-RC code and the 2D NOVA-R 
code. For the 1D problem, the computational task of deter- 
mining the equilibria involves integrating simple first-order 
differential equations in one variable. This task is performed 
extremely accurately. For the 2D equilibria, a second-order 
partial differential equation must be solved iteratively. All of 
the equilibrium data required to define the coefficients of the 
stability equations are directly calculated at each point on 
the stability grid for the 1D problem. For the 2D problem, 
the required equilibrium data are interpolated from an equi- 
librium grid onto the stability grid. For the 1D stability 
equations, every coefficient is explicitly expressed as an 
analytical function of the equilibrium data. In 2D, the 
coefficients of the final system of differential equations are 
generated numerically. 

We do not give an explicit list of the initial NOVA-R for- 
mulation equations in the 1D limit, since it is preferable to 
instead refer to the more comprehensive 2D equations given 
by (3.1)-(3.10) and (3.lst(3.5s). In the 1D limit, this list of 
15 equations in 15 variables includes six first-order differen- 
tial equations and nine zeroth-order equations. These equa- 
tions include 57 coefficients of undifferentiated variables 
and six coefficients of differentiated variables. These 63 
terms form the starting point of a symbolic algebra 
manipulator program. The “REDUCE” utility was used on 
the MFECCC Cray-XMP E-machine. The last live of these 
15 equations, (3.1s) through (3.5s) are eliminated analyti- 
cally in both the 1D and 2D formulations. For the 2D code, 
the first seven equations are eliminated numerically in order 
to arrive at the final set of differential equations which form 
the NOVA-R formulation. For the 1D problem, however, 
the first seven equations are also eliminated analytically. 

Unless stated otherwise, the resistivities given in this 
paper are scaled in units of inverse magnetic Reynold’s 
number and EMU units are used. In order to scale the given 
growth rate, s, and resistivity, q, into other units for a fusion 
reactor, one would use S = ~,.s and 6 = qr, Ja2, where tA = 
a &/B(O). Here L? and 0 are dimensionless numbers which 
are fixed regardless of the particular values of a, p, B(0). 

A. Resistive Interchange Instabilities in Cylindrical 
Spheromak-like Equilibria 

The first equilibrium we consider for testing the 
NOVA-RC code is the cylindrical spheromak-like equi- 

librium examined in Ref. [4]. The equilibrium profiles are 
defined for 0 6 r d 1 by 

1 

BAr) = q(r) BdrMkr) 

4(r) = qo(l - r2h p(r) = % Jr1 rBi ($)’ dr. 

We examine an equilibrium with the parameters: 

qO= 1.6, c1=0.7, k=a/R=0.3, B,(r=O) = 1, p = 1, a= 1. 

Note wA E B(O)/(a &) = 1 here. We compute the growth 
rateofam=n=2mode. 

The equilibrium is stable to ideal MHD interchange 
instabilities for 0 <u < 1 and is unstable to resistive inter- 
change modes for all cr>O [4]. The growth rate of the 
resistive interchange mode is determined to within four 
significant figures of the converged result with N= 200 
radial grid points when q > 10-r’. For the NOVA-RC 
results given in Table II, we use N= 1001 in order to 
investigate just how low we can reduce the resistivity before 
the NOVA-RC will stop converging toward asymptotic 
matching results. 

For large values of resistivity, q 2 10e4, we expect the 
asymptotic matching theory to break down, with leading 
order errors scaling as r] ‘j3 As q decreases, the growth rates . 
from NOVA-RC and asymptotic matching agree to five 
significant figures. But when q is further reduced, q < 10pz5, 

TABLE II 

9 NOVA-RC growth rate Asymptotic matching growth rate 

lo-4 
1om5 
lo-” 
lo-’ 
10-a 
10m9 
10-10 
10-l’ 
lo-l2 
lo-l3 
lo-l4 
10-15 
10-l’ 

1o-2o 

1O-25 
10-‘O 

2.2603 x 10 -’ 
1.3634 x lo-* 
6.8617 x 10m3 
3.2125 x lo-’ 
1.4480 x lO-3 
6.3665 x 10m4 
2.7505 x lO-4 
1.1763 x 10m4 
5.0217 x 10m5 
2.1573 x 1O-5 
9.3765 x 10m6 
4.1317 x 10m6 
8.3246 x lo-’ 

7.9818 k lo-’ 
1.6929 x 10-l’ 
3.6403 x IO-” 

3.3410 x lo-* 
1.5843 x lo-’ 
7.2977 x 1O-3 
3.2971 x lo-’ 
1.4642 x lo-’ 
6.3968 x lO-4 
2.7560 x 1O-4 
1.1772 x lO-4 
5.0234 x 10 - 5 
2.1576 x lO-5 
9.3772 x 10 -6 
4.1318 x 10-e 
8.3247 x lo-’ 

7.9818 x lo-* 
1.6929 x 10-l’ 
3.6401 x lo-‘* 
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FIG. 1. A comparison of the radial displacement of an unstable resistive interchange mode, as computed by (a) NOVA-RC and (b) asymptotic 
matching for q = 10e4. 

the agreement becomes worse. However, even at a magnetic decreasing resistivity, illustrating how the eigenfunctions 
Reynolds number of S= 103’, NOVA-RC still reproduces from NOVA-RC and asymptotic matching converge 
the asymptotic matching growth rate to four significant together. The NOVA-RC variable, tti, is divided by B, in 
digits. Attaining this degree of accuracy at low resistivities order to enable comparison with the asymptotic matching 
represents a breakthrough for a non-asymptotic code. variable, <, . 

Figures l-3 show the eigenfunction behavior in order of We now choose q = lo- lo for the cylindrical spheromak 
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FIG. 2. A comparison for q = IO-‘. 
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equilibrium to do convergence tests. We demonstrate the 
convergence of the NOVA-RC code with both a uniform 
and a nonuniform grid. The procedure foi how the radial 
grid points are preferentially allocated near the singular sur- 
face is described in Appendix B. Table III specifies how the 
growth rate changes according to the number of grid points 
that are used. Figure 4 demonstrates the NP4 convergence 
obtained when using a uniform grid. Note that for the 
nonuniform grid, the growth rate is within 0.2 percent of the 
converged result with only N= 100 grid points. 

B. Tearing Modes in Tokamak-like Equilibria 

Izzo et al. [ 121 reported on a tokamak-like ideal MHD 
stable cylindrical equilibrium which was examined for 

TABLE III 

NOVA-RC Growth Rates at q = lo-” 

Nonuniform grid 

N grid points Growth rate 

Uniform grid 

N grid points Growth rate 

50 2.6452 x 1o-4 

60 2.7619 x 10m4 1400 2.3512 x 1O-4 
80 2.7386 x 10m4 1500 2.4393 x 10 -‘+ 

100 2.1443 x lo-“ 1600 2.5610 x lo-“ 
150 2.7490 x 1O-4 1800 2.6259 x 10m4 
200 2.7499 x 10m4 2000 2.6940 x IO -’ 
300 2.7504 x 1O-4 2400 2.7382 x 10m4 
400 2.7504 x 1O-4 4000 2.7504 x 10 -’ 
500 2.7505 x 1O-4 6000 2.7505 x 10 m4 
600 2.7505 x 10 m4 8000 2.7505 x 1O-4 
700 2.7505 x 10m4 10000 2.7505 x 1O-4 

stability against resistive tearing modes. The NOVA-RC 
stability results are to be compared with the published 
results from the initial value code used by Izzo, referred to 
as HILO. HILO filters out the fast magnetosonic wave by 
making an expansion in the inverse aspect ratio and the 
plasma /?. The value of fl is assumed to be first order in 
E = a/R. The MHD equations that HILO solves are 
accurate to fifth order in E. Izzo defines /? = 2p(r)/B*( 1) and 
forthiscaseE=0.2and/?<6.13x10P4. 

0 1.0 2.0 3.0 

N” (-4) WHERE N=NO. OF RADIAL GRID POINTS 
x10-‘3 

FIG. 4. Convergence of the NOVA-RC q = 10-I’ resistive inter- 
change mode growth rate as a function of the total number of grid points 
used on a grid with uniform spacing. 
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TABLE IV 

v  NOVA-RC growth rate HILO growth rate 

2x10m6 3.41 x 1om4 3.4 x 1om4 
6x10-' 2.21 x 1om4 2.2 x 10-4 
1 x lo-’ 7.94x 1o-5 8.2 x 1O-5 
3 x 10-s 3.03 x 1om5 3.2 x 10m5 

The equilibrium of interest is defined for 0 Q r < 1 by 

q(r) = 1.6( 1 + r*/0.64), 

p(r) = cr(O.001 + 0.028r2 - 0.059r4 + 0.03r6), 

a=O.25, k=u/R=0.2, E;(l)= l,p= 1, a= 1. 

For the perturbation, m = 2 and n = 1 are chosen. This type 
of pressure profile is unusual in that it has a positive 
gradient for 0 < r < 0.558. In particular, p’(rs = 0.4) = 
2.28 x 1O-3 > 0 at the resonant surface. The physical 
motivation for using an equilibrium with the pressure 
gradient reversed at the resonant layer was to simulate the 
effects of good average curvature. 

For resistivities in the range 1.6 x lOPa < r] < 2 x 10 P6 
comparison with the HILO results from Izzo is given in 
Table IV. 

Unfortunately, a comparison of the third decimal place 
with the Izzo results is not possible because the HILO code 
is not able to find converged results to this degree of 
accuracy. The NOVA-RC code does agree with HILO at 
high resistivity to within the accuracy of the HILO code 
itself. 

The HILO code found that the equilibrium became stable 
at (roughly) r~ = 4 x 10P9. The NOVA-RC code, however, 
found stability at v = 4.5 x 10 P9. In addition to HILO, Izzo 
used a shooting code that solved the incompressible equa- 
tions. By using the shooting code, Izzo determined that the 
point at which the growth rate first became complex (as v] is 
lowered) occured at (Q s) = (1.6 x lo-*, 9.6 x 10P6). The 
NOVA-RC code found (q, s) = (1.5 x 10-8, 8.6 x 10P6). 
Thus, small but noticeable differences exist between the 
results of Izzo and the more exact treatment in NOVA-RC 
at low resistivities. 

VI. TOROIDAL GEOMETRY RESULTS 

A. Ideal Limit 

In this section we test the NOVA-R code against several 
previously known results in toroidal geometry. The first test 
is to ensure that the NOVA-R code correctly recovers 
known results in the axisymmetric 2D ideal MHD limit. As 
mentioned in the introduction, the NOVA-R formulation 
was deliberately chosen in order to greatly simplify this task. 
The NOVA-R formulation has been chosen to ensure that 

FIG. 5. The NOVA-Rcomputed harmonics of the radial displacement 
for an ideal MHD instability recovers the results published in Ref. [ 11. 

when one sets q =O, the NOVA-R code should recover 
results identical to that of NOVA. 

Here we illustrate the numerical recovery of a published 
NOVA result with the NOVA-R code. An equilibrium, 
which the ideal NOVA code found to be unstable to an 
m = 1, n = 1 internal kink mode [ 11, is analyzed by the 
NOVA-R code with 4 = 0. Figure 5 gives the NOVA-R 
result obtained with N = 100 evenly spaced $ grid points 
and eight poloidal harmonics from mlo = -2 to mhi = 5. 
For q = 0, we have numerically verified the equivalence of 
all terms in NOVA-R with the corresponding NOVA terms. 
The identical result was produced by the NOVA-R and 
NOVA codes. Figure 5 shows the eigenfunction tll for 
different poloidal harmonics corresponding to the growth 
rate, S= s/oA = 4.8 x lo-*. 

B. Resistive Interchange Modes in Toroidal Spheromak 
Equilibria 

Our aim is to define a sequence of 2D toroidal axisym- 
metric equilibrium which allows the NOVA-R code to 
recover results from the 1D NOVA-RC cylindrical code as 
the limit of the sequence. Let S,. symbolically represent the 
system of three second-order differential equations which 
make up the cylindrical stability equations. The cylindrical 
stability equations depend on the q profile, the machine size, 
and the toroidal and poloidal mode numbers, n, m, of the 
perturbation. Clearly, S,. = S,(q, a, R, n, m). For k = a/R 
the dependence of S, on q, a, R, n, m can be written in the 
more restrictive form, S, = S,(q/k, nk, m) [4]. This means 
that one cannot recover the cylindrical limit with an axisym- 
metric 2D code by merely letting k = a/R + 0. One also has 
to preserve the quantities q/k and nk. 
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The following parameters specify the cylindrical 
spheromak-like equilibrium which is being targeted for con- 
vergence studies. The equilibrium has a circular outermost 
surface and is defined in the region from 0 < r < 1 with the 
parameters: 

q(r) = qo( 1 - 0.9r2), p(r) =: j’ rBl(%)’ dr, 
r 

qO=O.l, a=O.l,k=a/R=O.l, B,(O)= l,p= l,a= 1. 

The equilibrium has a centrally peaked pressure profile 
with p(O) = 5.71 x 10P3. For the perturbation, m = 1 and 
n = 15 are chosen. Now we define a sequence of 2D equi- 
libria for which the corresponding 2D stability equations 
should approximate the 1D stability equations of the given 
cylindrical equilibrium as a/R + 0. For low /?, q, and a/R in 
axisymmetric equilibria, the flux surfaces of the equilibria 
are very circular and the volume within a given flux surface, 
V = V($), should vary as r*, where r represents the average 
minor radius on the flux surface. After normalizing both 
O<r<landO<V($)<l,wedefine 

(r2) J:” r2JIXd0 
j$ J/A-de ’ 

The 2D spheromak equilibria are specified by the following 
parameters and profiles: 

q($)=qo(l-0.9V), $= 
1 dV 

-aV,& Bf 

a = 0.1, B;(O) = 1, p = 1, a = 1. 

The pressure is required to vanish at the wall. Given the 
assumption that V= r2, the cylindrical pressure profile is 
easily recovered after multiplying both sides of the equation 
for dP/d$ by d$/dr. The three sets of parameters shown in 
Table V were used to obtain the large aspect ratio equilibria 
that we investigated. 

For the third case, note that p(O) = 5.73 x lop3 is 
approximately the same as the value (5.71 x 10P3) found in 
the cylindrical limit. For the purposes of testing whether 
NOVA-R correctly recovers the cylindrical limit, the third 
case is of the most interest since the central pressure agrees 
well with the cylindrical limit and the inverse aspect ratio is 

TABLE V 

Case k=a/R 40 n Resulting p(O) 

1 0.25 0.25 6 5.54 x lo-’ 
2 0.10 0.10 15 5.69 x lo-’ 
3 0.01 0.01 150 5.73 x 1om3 

zO.4 I 

-0.8 
. 

FIG. 6. The flux surfaces of a nearly circular 2D spheromak-like 
equilibrium (with a/R=O.Ol). The equilibrium is unstable to resistive 
interchange modes. 

small. Figure 6 gives the structure of the flux surfaces on the 
radial ($) stability computational grid for the a/R = 0.01 
equilibrium. 

First the NOVA-R code is tested when keeping only the 
resonant harmonic (m = 1, n = 150). This represents the 
closest possible comparison of NOVA-R with the computa- 
tion performed by the cylindrical code. Let (Nf, M) 

5.0 I- I I I I 

3.0 $1 
0 1 2 3 4 5 

xl o-4 
N-(-2) WHERE N=NO. OF EQUILIBRIUM RADIAL GRID POINTS 

FIG. 7. The convergence of the NOVA-R growth rate of the resistive 
interchange mode for a/R = 0.01 and r/ = lo-’ is shown as a function of the 
number of radial grid points used in the calculation of the equilibrium. 
Some of the equilibrium quantities calculated begin to oscillate between 
grid points at high N,, confirming the degradation away from l/Nf 
convergence shown for high N,. 
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0 1 

FIG. 8. The NOVA-R computed radial displacement of the unstable 
resistive interchange mode at 11 = IO-‘. 

represent the number of $ radial grid points and poloidal 
harmonics kept in the final NOVA-R stability calculation. 
Let E designate the width of a region or “layer” about the 
resonant surface. Let f represent the fraction of the total 
number of radial stability grid points (N,) which are to be 
packed within the layer. Let (N$, Nz) give the number of 
radial and theta grid points used in the equilibrium calcula- 
tion and 6 represent the error tolerance of the equilibrium 
code [27]. For the moment we are keeping only one 
poloidal harmonic, (M = 1 ), but in general, the growth rate 
is a function of many computational parameters, 

s=s(Nf,N,e,6,N!, M3.k E). 

In order to confirm the results, convergence with respect to 
all of these parameters had to be verified. Excellent numeri- 
cal convergence of s was easily obtained with respect to all 
of these parameters with the exception of N$. For example, 
results in this section came from N, = 300, and lowering N, 
to 200 changed only the sixth significant figure in the growth 
rate. Lowering 6 by four orders of magnitude also affected 
only the sixth decimal of the growth rate. The surprisingly 
large dependence of s on N$ is shown in Fig. 7, which 
illustrates a (N$)-2 dependence. The resistivity is fixed at 

TABLE VI 

q = lop7 NOVA-R Growth Rates 

Modes Nf=64 Nf = 101 NC=200 

Many 4.236 x 1O-5 3.567 x 1o-5 3.146 x lo-' 
Single 4.237 x lo-' 3.568 x lo-’ 3.147 x 1o-5 

TABLE VII 

r] = lo-’ NOVA-R Growth Rates 

Case k=a/R Growth rate 

1 0.25 3.34 x to- 5 
2 0.10 3.17 x 1om5 
3 0.01 3.15 x 1om5 

q = lo-’ here. The data point given by a circle indicates the 
cylindrical limit obtained from the NOVA-RC code. The 
growth rates given here are in units of S= s/o, and 
wA = 10.0 for all three spheromak equilibria given in 
Table V. Figure 8 shows the unstable eigenfunction, {+, for 
q = 10e7 and Nf = 200. 

The equilibrium information is calculated with the use of 
“centered” finite difference formulas which are accurate to 
second order. Thus the equilibrium data are known to con- 
verge like (Nt) P2. The tearing mode examined in Section C 
displays a relatively weaker dependence on Nt. A decrease 
of 25 % in the growth rate between N$ = 64 and N$ = 200 
was seen for this spheromak equilibrium at v = 10P7. This 
decrease is only 3 % for the tokamak equilibrium (analyzed 
in Section C) at q = lo-‘. The unusually large N$ 
dependence seen here can primarily be explained by the fact 
that for these low growth rates, the plasma is very close to 
marginal stability. Therefore, the accuracy of the equi- 
librium data is being tested more stringently by the 
NOVA-R code than is usually the case for stability codes 
which examine ideal instabilities, for example. 

The next simple test of the NOVA-R code involves 
expanding the stability calculation in order to keep track of 
more than one harmonic. For this nearly cylindrical equi- 
librium, the addition of extra non-resonant harmonics 
should not affect the result. For the previous runs only the 
m = 1 resonant harmonic was kept. The range of harmonics 
is expanded to m E [ - 1, 0, 1, 2, 31. The resulting growth 
rates are given in Table VI. 

For an additional check we fix Nf = 200 and fix the range 
of poloidal harmonics at [ - 1, 0, 1, 2, 33 in order to 
examine the variation in the NOVA-R growth rate for each 
of the three previously defined equilibria cases, given in 
Table V. Toroidal effects are known to be of lesser impor- 
tance for low /?, a/R, and q plasmas. This test, as shown in 
Table VII, also helps to ensure that the a/R = 0.01 case was 

TABLE VIII 

k = a/R = 0.01 NOVA-R Growth Rates 

NOVA-RC 
(cylindrical limit) 

NOVA-R 

q= lomg ‘1= lo-’ q= 10-e 

1.58 x lo-’ 3.22 x 1O-5 6.06 x lo-’ 
1.55 x 10-5 3.15 x loms 5.90 x 1o-5 
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FIG. 9. Comparison of NOVA-R ( q ) growth rate results at 
a/R=O.Ol with the NOVA-RC (0) computed cylindrical limit. The 
straight line gives the asymptotically predicted scaling of the growth rate. 

sufficiently converged to the a/R + 0 limit so that we could 
properly compare it to the results from the cylindrical code. 

For the final check we vary the resistivity while fixing 
a/R = 0.01, N$ = 200, and keeping the range of poloidal 
harmonics at [ - 1, 31. This is done to check whether 
s - g1j3. The growth rates as a function of r] for the 
a/R = 0.01 case are given in Table VIII and Fig. 9. 

C. Tearing Modes in Tokamak Equilibria 

The following parameters give a tokamak equilibrium 
which has previously been determined to be unstable to 
resistive tearing modes by the resitive PEST code. This equi- 
librium has a circular outermost flux surface and is defined 
on the region from 0 < $ < 1 with the parameters: 

k=a/R=O.l, B,(O)= 1, p= 1, a=O.l, 

q(t+h) = 1.1 + 1.8$*, p(t,+) = 0. 

For the computation of the equilibrium, Nz = 200 was used. 
Growth rates are scaled using S= s/wA and W: = 
B2(0)/[pq2(a)R]. Note that the minor radius, a, is set to 0.1 
for this equilibrium. Thus, the value of q used in the calcula- 
tion for this case is a factor of 10 smaller than the inverse 
magnetic Reynold’s number, S’. In order to analyze the 
stability of this equilibrium, the range of poloidal harmonics 
is fixed at m E [ - 1, 0, . . . . 51 and the toroidal mode number 
was set at n = 1. A total of N, = 300 radial points were used 
for the stability grid. 

Figure 10 shows the harmonics of ls for the unstable 
tearing mode corresponding to q = lo-‘. The resonant 
m = 2 harmonic is clearly dominant. Figure 11 gives the tti 

q=2 

m=2 
/ 

FIG. 10. The NOVA-R computed eigenmode of a unstable resistive 
tearing mode at rj = lo-‘. 

eigenfunction at q = lo- lo. This same NOVA-R q = 10-i’ 
result shown in Fig. 11 is again displayed in Fig. 12, after 
magnifying the scale on the vertical axis by a factor of about 
20. This blowup of the eigenfunction causes most of the 
inner layer solution to be “clipped” off. The vertical scale of 

m=2 

FIG. 11. The NOVA-R computed eigemnode of a unstable resistive 
tearing mode at t] = IO-lo. 
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FIG. 13. Scaling of the growth rate with resistivity for the unstable 

c;=cyy$l;, 

l/2 

) For the & = 2, n = 1 resonant harmonic of tti = 5 .V$, the 
following asymptotic coefficients were used to define A’: 

FIG. 12. A superposition of the eigenmode computed by the resistive 
PEST code and a blowup of the same data seen in Fig. 11 is given. 
This overlay of the NOVA-R and PEST eigenfunction shows excellent 
agreement. 

,the blowup is normalized so that the maximum value that 
lti reaches (if not clipped off) is unity. In addition to the 
clipped NOVA-R solution, the entire lIL function generated 
by the resistive PEST code was graphed in Fig. 12. The two 
results are in excellent agreement and coincide everywhere, 
with the exception of within the resistive layer. The PEST 
code calculates the eigenfunction in the region away from 
the singular surface. For the horizontal region lying between 
the points where the eigenfunction intersects the top and 
bottom of the graph, only the NOVA-R solution is defined. 
For 9 = lo-“, one can expect good agreement with the 
asymptotic solution in the ideal region of the plasma. 
Figure 12 shows excellent agreement of the two codes. 

Figure 13 demonstrates the q3j5 growth rate scaling of the 
unstable tearing mode calculated by the NOVA-R code. 
The data shown in Fig. 13 is given directly in Table IX. 

The value of A’ represents the asymptotic behavior of the 
ideal solution very close to the resonant surface. Therefore, 
in order to measure A’ from the eigenfunction solution of 
the NOVA-R code, one must determine a region which is 
very close to the resonant surface and yet very far from the 
region where resistivity, inertia, and compressibility become 
important. This should be possible for sufficiently small 
resistivity (II 6 lo-“) when the outer region equations 
become valid near the singular layer. 

1 
for r<r, 

($*)/r x 
c, (r-rs, +cs- 

1 (6.1) 

c: ,r-ry,, +c: for r>r,, 

where r represents the square root of the normalized 
poloidal flux (0 ,< r d 1). Here rs gives the location of the 
m = 2, n = 1 singular surface. A’ is then given by 

A’- ‘J- ; ‘: 
c; c: 

Our procedure for determining the C coefficients involves 
fitting the NOVA-R computed values of l’,“‘/r at successive 
pairs of adjacent grid points (near the rational surface) 
using the functional form given by Eq. (6.1). Through 
analysis of the tti eigenfunction corresponding to r] = IO-“, 
NOVA-R determined that 1.0 < A’ ,< 1.4. The resistive 
PEST result was A’ = 1.5 f 0.5. 

TABLE IX 

NOVA-R Growth Rates versus Resistivity 

Resistivity 10-‘O 1O-9 10-S lo-’ 
Growth rate 9.20x 1O-5 3.65x lo-‘+ 1.37x lo-’ 5.10x IO-’ 
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VII. SUMMARY 

We have developed a formulation of the linearized 
resistive MHD eigenmode equations which prevents the 
computation of resistive modes from being degraded by 
spectral polution from fast wave terms. This was accom- 
plished by isolating the terms involved in the computation 
of the continuum spectra. The practical numerical advan- 
tages gained by using a formulation which separates out the 
continuum spectrum is the ability to accurately calculate 
resistive modes for the entire range of resistivities relevant to 
fusion reactors. 

A derivation of the NOVA-R eigenmode equations has 
been presented. Straight held line magnetic flux coordinates 
are used, and this choice is well suited for efficiently 
approximating resonant modes with a limited range of 
poloidal harmonics. An explanation was given on how we 
expand into A4 poloidal harmonics and numerically 
eliminate the first seven equations to form a system of 3M 
second-order differential equations. The NOVA-R code 
currently imposes that the tangential electric field and per- 
pendicular displacement vanish at the wall. Expanding the 
code to handle different types of boundary conditions is 
straightforward. 

The following technical advantages of the NOVA-R 
formulation are pointed out. (1) It involves only three 
coupled second-order equations, in N = 3 variables. 
(2) For finite resistivity and for v] = 0, none of the variables 
have highest order derivatives (in a/8$) which are first 
derivatives. (3) The NOVA-R equations do not become 
degenerate at any point in the plasma away from the 
magnetic axis. (4) NOVA-R directly recovers the identical 
results of a well established 2D ideal MHD code, NOVA, 
for q = 0 and a smooth connection exists between the finite 
9 NOVA-R code and the NOVA code in the r] + 0 limit. 

Section IV describes the numerical methods used in the 
NOVA-R code. In Appendix A we demonstrate how 
rewriting a B-spline package [31-321 improved the com- 
putational accuracy of numerical solutions by up to four 
orders of magnitude. The relative advantages offered by the 
NOVA-R cubic B-spline package with respect to linear 
elements were demonstrated by examining an example 
problem. In order to study resistive modes, a nonuniform 
grid was used with many grid points placed near the 
resonant surface(s). Our approach and formulation for 
solving the resistive MHD equations has a straightforward 
extension from the cylindrical to the 2D problem. 

In Section V, we have established the accuracy of the 
NOVA-RC code by comparing results with other estab- 
lished ID codes. The NOVA-RC code recovered asymptotic 
matching results for resistivities significantly below the 
range of interest for fusion reactors and initial value results 
for resistivities well above the range of interest for fusion 
reactors. This demonstrated that the NOVA-RC code is 

producing the most accurate results within the range of 
resistivities of interest for fusion reactors. Because cubic 
B-splines are being used, we are able to obtain converged 
results with an order of magnitude fewer grid points than 
linear finite elements would require. This advantage 
becomes very important for the 2D problem. The 
NOVA-RC results presented demonstrate the feasibility of 
extending our non-asymptotic approach and choice of 
formulation to the 2D problem. 

The recovery of asymptotic matching results for magnetic 
Reynolds numbers as high as S= 103’ validates our 
approach for removing spectral pollution by carefully 
choosing a formulation of the problem which “separates 
out” the continuum spectrum. The accuracy of these low 
resistivity results represent a breakthrough for a non- 
asymptotic code. The important problem of how to 
optimally choose a formulation for solving the resistive 
MHD stability equations has been resolved. 

The NOVA-RC and NOVA-R codes are not limited by 
any sort of ordering assumptions or approximations that 
might limit the range of applicability. The wider range of 
applicability represents an important advantage over many 
of the previously developed 1D resistive MHD stability 
codes. Because no ordering assumptions are made, our 
approach is more comprehensive in capability for the low 
resistivity regime than asymptotic matching codes. There is 
no reason to believe that the specific ordering assumptions 
used for the asymptotic approach will be comprehensive 
enough to include the behavior of all possible types of 
instabilities in the low resistivity limit. Other consistent 
orderings may exist. By avoiding any ordering schemes or 
assumptions, we are free to search for additional modes 
which may not scale like the tearing or interchange modes 
in the low resistivity limit. In particular, both the 
NOVA-RC and 2D NOVA-R codes have found unstable 
modes which scale linearly with ‘I. These modes are 
anticipated to be the object of further research in the 
immediate future. 

Section VI gives numerical results from the NOVA-R 
code. The ability of the NOVA-R code to properly analyze 
the stability of general axisymmetric equilibria in the ideal 
limit was demonstrated. The task of making this check has 
been greatly facilitated by choosing a formulation which 
performs the identical computation as the NOVA code in 
the ideal limit. The NOVA-R code was used to analyze the 
resistive stability of axisymmetric toroidal equilibria. A 
spheromak-like 2D equilibria which was unstable against 
resistive interchange modes was analyzed by the NOVA-R 
code. The NOVA-R code correctly recovered cylindrical 
results in the limit of infinite aspect ratio. An equilibrium 
previously determined to be unstable to tearing modes 
by the resistive PEST code was also analyzed. We 
demonstrated the ability of the NOVA-R code to resolve the 
unstable mode at v] = lo-“. This demonstrates that the 
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NOVA-R approach can make accurate calculations for low 
resistivities in the range relevant for fusion reactors. 
Excellent agreement with the PEST calculated eigenmodes 
and subsequent A’ calculation was found. 

The NOVA-R code provides quantitative information 
about what resistive MHD predicts, which may be com- 
pared with experimental results. In the future, the NOVA-R 
stability analysis of specific equilibria can provide useful 
information relevant for the understanding and designing of 
future machines. 

APPENDIX A: THE B-SPLINE PACKAGE 

In this section we document the improvement in accuracy 
obtained by rewriting a B-spline package obtained from the 
University of Texas at Austin [31-321. For an example 
problem, we illustrate the relative performance of linear 
finite elements, the Texas B-spline package, and the package 
used by NOVA-R. For simplicity, only evenly spaced grids 
are used for the example problem. 

Let N represent the number of grid points used. For cubic 
B-splines, one can converge to the solution of a linear 
differential equation with an error that scales like 1/N4. 
Linear elements converge like l/N’. Although higher order 
elements converge still faster, B-splines are optimal for 
interpolating the coefficients of the differential equation. 
The coefficients of the differential equation are generally 
known only at the grid points, so an interpolation is 
required to define these coefficients everywhere. Assume 
that one wishes to interpolate N data points defined on the 
domain, 0 < x < 1. Among all functions, f(x), which have 
continuous second derivatives and interpolate N specified 
data points, the cubic B-spline interpolation minimizes 

i’ [j-“(x)]’ dx. 
JO 

Interpolations made with higher order polynomials tend to 
oscillate between grid points [33]. 

Regardless of what type of package is used, the errors 
generated by differential equation solvers generally stop 
converging for sufficiently large values of N. Let A represent 
the relative error caused by computer round off errors. For 
the Cray, A = 5 x 10-16. Consider the differential equation 

a(x) u”(x) + b(x) u(x) = 0. 

For the proper order of magnitudes, let a(x) - a, and 
b(x) - 6,. Consider finite elements with compact support 
over a domain having a length which varies as l/N. 
Regardless of what type of finite elements (or finite differ- 
ences) are used, after discretizing the equation a(x) u”(x) + 
b(x) u(x) = 0, one will end up summing terms on the order 
of a,N*(l + A) with b, terms. As N becomes large, the 

numbers representing b(x) u(x) start to become truncated. 
Therefore, the accuracy of all second-order differential 
equation solvers are limited by a “saturation” error on the 
order of ERR - (so/b,) N*A. 

The Texas package, however, will be shown to saturate 
with a worse error, which scales like N3. For convenience, 
the Texas package defines all of the fourth-order polyno- 
mials as an expansion about x = 0. This creates a problem. 
In order to illustrate, let xk represent the value of x at some 
kth grid point, where xk is of order unity. Let y = x - xk. In 
order to evaluate a cubic B-spline between xk and xk + , , it 
is necessary to evaluate the highest order term, 

&y)=cry3 at y=6 for 6 - l/N. 

Accounting for the roundoff error in 6, the computer 
obtains 4(6) = ad3( 1 + A)3. But, if one uses x instead of y as 
the independent variable, 

J(x) = cc[x’ - 3x*x, + 3xx: - xi]. 

For simplicity, assume that the computer only mis- 
represents the xi term by using x: + x2( 1 - A). Now, 

i(x) = ~((6~ + x;A) - aa3(1 + CN3A). 

By not defining the polynomials of the finite elements 
locally, the Texas package introduces a new saturation error 
which scales like N3. In the NOVA-R package, the cubic 
B-splines polynomials are defined by expansions about the 
nearest grid points. 

As previously stated, the performance of three different 
differential solving packages are to be compared. A simple 
differential equation problem is chosen: 

-ur’(x)+x2u(x)=[x2+(4)‘]sin(y), 

u(O)=O, u(l)= 1. 

The solution is 

u(x) = sin(lrx/2). 

Let the computer-generated solution be represented by 
u*(x). For N evenly spaced grid points given by {xk}F= ,, 
the error is defined to be 

ERR(N) = max u*(x,)-sin 5 . 
ke C1.W ( >I 2 

The resulting errors, ERR(N), are shown in Fig. 14. 
Before encountering saturation due to roundoff errors, 

the Texas and NOVA-R packages converge like 1/N4, while 
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N = THE NUMBER OF GRID POINTS 

FIG. 14. Acomparison of the numerical errors for three different finite 
element packages demonstrates the superior accuracy of the modified 
package used by the NOVA-R and NOVA-RC codes. (0) NOVA-R 
B-Spline Package; (A) Linear Finite Elements; ( x ) Texas B-Spline 
Package. 

the linear elements converged like l/N*. As N is increased, 
the Texas package prematurely saturates with an error 
given by 

ERR z CN3A for A=5x 10W16, C=63. 

The linear elements and the NOVA-R package saturation 
error is given by 

ERR z CN*A for A=5~1O-‘~,C=1.4. 

For the minimal errors, the Texas B-spline package 
obtained ERR z 5 x 10P9, NOVA-R obtained ERR z 
5 x lo-“, and linear elements obtained ERR x 5 x lop9 
with N z 50, N z 150, and N z 2000, respectively. For this 
example problem, the NOVA-R package represents a 
significant improvement relative to both linear elements and 
the original Texas package. 

APPENDIX B: GRID PACKING 

For problems with internal boundary layers, the numeri- 
cal convergence can be improved by employing a non- 
uniform grid which is relatively more dense in the layer. The 
reason grid packing algorithms tend to be somewhat 
complicated is that the length between adjacent regions 
should not be allowed to change too quickly. Numerical 
instabilities may arise if the separation between adjacent 
grid points changes too abruptly. 

The NOVA-R code first calculates the value, $,, where 
q(t,bs) = m/n for the resonant harmonic. An internal 
parameter, eps, is set to roughly the half width of the layer. 

Let N represent the total number of II/ grid points. For 
problems with only one rational surface, N, = N/7 grid 
points are packed into the resistive layer on a uniformly 
spaced grid. Outside of the resistive layer, the spacing 
between grid points grows geometrically. The spacing 
increases by a factor of ( 1 + pr) to the left, where p, is among 
a set of discrete values which allow a grid point to exactly 
“land” at I) = 0. Similarly, the spacing increases by a factor 
of (1 + p,) on the right, all the way to $ = 1. One needs to 
determine N, and N,, the number of grid points to be used 
within the left and right regions outside of the [I+$~ - eps, 

II/ + eps] interval. The values of N, and N, are determined by 
minimizing the statistical deviation of pr and pr, subject to 
the constraint that N = N, + N, + N/7. 

Generalizing this procedure for two resonant surfaces is 
done by defining two layers, ~)~r +eps and es2 keps. A 
point is chosen exactly in between the two layers in order to 
split the region between the layers into two equal parts. The 
manner of allocating grid points between the four resulting 
“external” regions is again done by minimizing the statisti- 
cal deviation of the four respective percentages. Here, the 
two middle regions of equal length should be constrained to 
have an equal number of grid points. 
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